1. Classical cryptography, symmetrical and asymmetrical cryptosystems, mathematical complexity, quantum key distribution. Epsilonsecurity, authentication, quantum secret growing. 2. Discrete variables, noncloning theorem, Bell inequalities. 3. Discretevariable protocols: BB84, E91, modifications, information postprocessing. 4. Classical information theory: discrete variables; Security analysis, QBER, individual/collective attacks. 5. Practical implementations: decoystate, plugandplay. 6. Practical issues: sources, channels, detectors, quantum hacking. 7. Continuous variables, Gaussian states, coherentstate protocol, squeezedstate protocol, entanglementbased implementation. 8. Classical information theory: continuous variables. Quantum capacity. Security analysis of continuousvariable protocols: individual/collective attacks, extremality of Gaussian states. 9. Practical issues: attenuation, noise, sidechannels. 10. Realistic postprocessing, finitesize effects. 11. Perspectives: secure quantum computing, quantum networking, repeaters, deviceindependent security.


G. Van Assche. (2006). Quantum Cryptography and SecretKey Distillation. Cambridge University Press.

Ch. Weedbrook, S. Pirandola, R. GarcíaPatrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd. (2012). Gaussian quantum information.

M. Dušek, N. Lütkenhaus, M. Hendrych. (2006). Quantum Cryptography.

M.A. Nielsen, I.L. Chuang. (2000). Quantum Computation and Quantum Information. Cambridge University Press.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. (2002). Quantum cryptography.

V. Scarani, H. BechmannPasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev. (2009). The security of practical quantum key distribution.
