Course: Geodesic Mappings and their Generalizations

« Back
Course title Geodesic Mappings and their Generalizations
Course code KAG/PGSGZ
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 0
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Mikeš Josef, prof. RNDr. DrSc.
Course content
Geodesic, holomorphically-projective and F-planar mappings, transformations and deformations of spaces with affine connection and Riemannian spaces.

Learning activities and teaching methods
Work with Text (with Book, Textbook)
Learning outcomes
Sumarize knowledge the geodesics mappings and its generalizations.
1. Knowledge Describe properties of the geodesics mappings.
Prerequisites
Knowledge the principles on university mathematics level.

Assessment methods and criteria
Oral exam, Written exam

Oral exam.
Recommended literature
  • Kobayashi S.,Nomizu K. (1969). Foundations of Differential geometry I, II. Willey.
  • Mikeš, J., Kiosak, V., Vanžurová, A. (2008). Geodesics Mappings of Manifolds with Affine Connection. Olomouc, Palackého univerzita.
  • Mikeš J., Radulovič Ž.,Gavrilčenko M.L. (1997). Geodetická zobrazení a deformace Riemannových prostorů. Podgorica.
  • Petrov A.Z. (1969). Einstein spaces. Oxford-London-Edingrugh-New York-Toronto-Sydney-Paris: Pergamon Press.
  • Sinyukov, N. S. (1979). Geodesic mappings of Riemannian spaces. Nauka Moskva.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester