Course: Mathematics 2

« Back
Course title Mathematics 2
Course code KMA/M2
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 11
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Kouřilová Pavla, Mgr. Ph.D.
  • Andres Jan, prof. RNDr. dr hab. DSc.
  • Pavlačková Martina, RNDr. Ph.D.
  • Bebčáková Iveta, Mgr. Ph.D.
  • Pavlačka Ondřej, RNDr. Ph.D.
  • Kratochvílová Blažena, RNDr. Ph.D.
  • Vencálek Ondřej, Mgr. Ph.D.
Course content
1. Integral as a function of upper/lower limit. Improper integral. 2. Metric spaces. 3. Bivariate function - definition, properties, limit of a bivariate function. 4. Bivariate function - continuity of a bivariate function, partial derivative. 5. Bivariate function - higher order partial derivative, differential, Taylor polynomial. 6. Bivariate function - minima and maxima. 7. Function of three variables. Implicit function. 8. Double integral over closed rectangular. 9. Double integral over measurable set. Series of real numbers. 10. Convergence and divergence tests. 11. Function series. 12. Power series.

Learning activities and teaching methods
Lecture
  • Attendace - 78 hours per semester
  • Homework for Teaching - 70 hours per semester
  • Preparation for the Course Credit - 60 hours per semester
  • Preparation for the Exam - 120 hours per semester
Learning outcomes
Understand the mathematical tools of differential and integral calculus of functions of several variables.
Comprehension Understand the mathematical tools of differential and integral calculus of functions of several variables.
Prerequisites
Knowledge of differential and integral calculus of a function of one variable.
KMA/M1

Assessment methods and criteria
Oral exam, Written exam

Credit: attend the classes and pass the written test. Exam: pass the written part and show knowledge and understanding during the oral exam.
Recommended literature
  • B. P. Děmidovič. (2003). Sbírka úloh a cvičení z matematické analýzy. Fragment, Praha.
  • Bartsch, H.-J. (1983). Matematické vzorce. Praha: SNTL.
  • Brabec J., Hrůza B. (1989). Matematická analýza II. SNTL, Praha.
  • J. Brabec, F. Martan, Z. Rozenský. (1989). Matematická analýza I, II. SNTL, Praha.
  • K. Rektorys. (1963). Přehled užité matematiky. SNTL Praha.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester