Course: Mathematics 2

« Back
Course title Mathematics 2
Course code KMA/MAT2
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory, Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Ženčák Pavel, RNDr. Ph.D.
  • Burkotová Jana, Mgr. Ph.D.
  • Kouřilová Pavla, Mgr. Ph.D.
  • Andres Jan, prof. RNDr. dr hab. DSc.
  • Pavlačka Ondřej, RNDr. Ph.D.
  • Fišer Jiří, RNDr. Ph.D.
Course content
1. Fundamentals of integral calculus: Indefinite integral, the Riemann integral, application in determination of curve length, area, surface and volume of a solid of revolution. 2. Functions of two variables: Partial derivative, local extremes, differential. 3. Introduction to differential equations: First order ordinary differential equations. 4. Fundamentals of numerical mathematics: Numerical solving of equations with one unknown variable - iterative method. Interpolation, least squares approximation method, differences, numerical differentiation and integration.

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
  • Attendace - 52 hours per semester
  • Homework for Teaching - 20 hours per semester
  • Preparation for the Course Credit - 40 hours per semester
  • Preparation for the Exam - 65 hours per semester
Learning outcomes
Understand the principles ofintegral calculus and theory of differential equations.
Comprehension Understand basic principles ofintegral calculus and theory of differential equations.
Prerequisites
Differential calculus of functions of one variable.

Assessment methods and criteria
Oral exam, Written exam

Credit: Passing written tests (i.e. obtaining at least half of the possible points in each test). Exam: Oral exam.
Recommended literature
  • B. Budinský, J. Charvát. (1990). Matematika I. SNTL, Praha.
  • Bartch H. J. (1983). Matematické vzorce. SNTL, Praha.
  • J. Kopáček. (2002). Matematická analýza pro fyziky. Matfyzpress.
  • Kolda S., Krajňáková D., Kimla A. (1990). Matematika pro chemiky II. SNTL Praha.
  • Kolda S., Krajňáková D., Kimla A. (1989). Matematika pro chemiky I. SNTL Praha.
  • R. A. Adams. (1991). Calculus: A Complete Course. Addision-Wesley Publishers Limited.
  • Tebbut P. (1995). Basic Mathematics for Chemists. Chichester.
  • V. Kotvalt. (2003). Základy matematiky pro biologické obory. Karolinum, Praha.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester
Faculty of Science Optometry (2014) Health service 1 Summer
Faculty of Science Digital and Instrument Optics (1) Physics courses 1 Summer
Faculty of Science Experimental Biology (2016) Biology courses 1 Summer
Faculty of Science Instrument Physics (1) Physics courses 1 Summer