Course: Continuum Mechanics 2

« Back
Course title Continuum Mechanics 2
Course code KMA/MK2A
Organizational form of instruction Lecture + Seminar
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Fürst Tomáš, RNDr. Ph.D.
  • Horák Jiří, doc. RNDr. CSc.
  • Ligurský Tomáš, RNDr. Ph.D.
  • Vodák Rostislav, RNDr. Ph.D.
Course content
A. Elasticity primer (linear elasticity in one dimension) B. Linear elasticity in three dimensions 1. Derivation of the governing equations 2. Variational approach 3. Solution methods C. Fluids 1. Ideal fluids 2. Elastic fluids 3. Newtonian fluids 4. Heat conducting compressible fluids

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
  • Attendace - 39 hours per semester
  • Semestral Work - 40 hours per semester
  • Homework for Teaching - 10 hours per semester
Learning outcomes
Understand mathematical description of elasticity and fluid flow
Application Apply differential and intergral calculus of functions of several variables to flow modeling and elasticity.
Prerequisites
Mathematical tools for continuum description.
KMA/MK1

Assessment methods and criteria
Oral exam, Written exam

seminar work
Recommended literature
  • C. Truesdell. (1975). A first course in rational mechanics (v ruštině). Izdatelstvo Mir, Moskva.
  • D. E. Carlson. (1972). Linear Thermoelasticity Encyclopedia of Physics VIa/2. Springer-Verlag Berlin.
  • G. Duvaut, J. L. Lions. (1976). Inequalities in Mechanics and Physics. Springer, Berlin.
  • J. Haslinger, I. Hlaváček, J. Nečas, J. Lovíšek. (1982). Riešenie variačných nerovností v mechanike. ALFA Bratislava.
  • J. Nečas, I. Hlaváček. (1983). Úvod do matematické teorie pružných a pružně plastických těles. SNTL, Praha.
  • M. E. Gurtin. (1981). An Introduction to Continuum mechanics. Academic Press, New York.
  • M. E. Gurtin. (1972). The linear theory of elasticity, Encyclopedia of Physics, VIa. Springer-Verlag, Berlin.
  • P. G. Ciarlet. (1986). Mathematical Elasticity, Volume I.: Three-dimensional elasticity. Elsevier Amsterdam.
  • P. G. Ciarlet. (1997). Mathematical Elasticity, Volume II.: Theory of plates. Elsevier Amsterdam.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester