Course: Mathematical Theory of Decision Making 1

« Back
Course title Mathematical Theory of Decision Making 1
Course code KMA/MTR1N
Organizational form of instruction Lecture + Exercise
Level of course Master
Year of study not specified
Semester Summer
Number of ECTS credits 4
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Talašová Jana, doc. RNDr. CSc.
  • Bebčáková Iveta, Mgr. Ph.D.
Course content
1. General model of decision making situation and its special cases. 2. Deterministic and indeterministic utility theory. 3. Theory of preference relations. 4. Types of evaluation, evaluating scales. 5. Multiple criteria decision making: general formulation of the problem, stages of the decision process. 6. Decision criteria, their classification. 7. Analysis of the set of criteria. 8. Criteria weights, their setting. 9. Decision alternatives, special methods for their generating. Analysis of the set of alternatives. 10. Multiple criteria decision making methods for cardinal criteria: Overview of the basic methods (with missing, ordinal or cardinal information about criteria preferences). 11. Multiple criteria utility function. Distance minimizing method. Compensation method. Partial objectives method. Saaty's Analytical Hierarchical Process. 12. Multiple criteria decision making methods for ordinal criteria: Agrepref, Electra, method of approximation of a fuzzy relation. 13. Special methods of multiple criteria evaluation.

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
  • Attendace - 39 hours per semester
  • Excursion - 30 hours per semester
  • Preparation for the Course Credit - 50 hours per semester
Learning outcomes
Comprehend fundamentals of the mathematical theory of evaluation and decision making. Understand the main theoretical approaches to multiple criteria decision making and know corresponding mathematical methods.
Comprehension Comprehend fundamentals of the mathematical theory of evaluation and decision making. Understand the main theoretical approaches to multiple criteria decision making and know corresponding mathematical methods.
Prerequisites
Basic course of mathematics.

Assessment methods and criteria
Seminar Work

Credit: Students have to prove their understanding of the theory and methods of multiple criteria decision making in projects solved by groups of students.
Recommended literature
  • C. L. Hwang, K. Yoon. (1980). Multiple Attribute Decision Making. Springer-Verlag Berlin, Heidelberg, New York.
  • J. Fotr, J. Dědina, H. Hrůzová. (2003). Manažerské rozhodování. Ekopress, Praha.
  • J. Fotr, M. Píšek. (1986). Exaktní metody ekonomického rozhodování. Academia, Praha.
  • J. Ramík. (1999). Vícekriteriální rozhodování - analytický hierarchický proces (AHP). OPF SU, Karviná.
  • J. Talašová. (2003). Fuzzy metody vícekriteriálního hodnocení a rozhodování. VUP, Olomouc.
  • P. C. Fishburn. (1970). Utility Theory for Decision Making. J. Willey, New York.
  • P. Dostál, K. Rais, Z. Sojka. (2005). Pokročilé metody manažerského rozhodování. Grada Publishing, Praha.
  • T. L. Saaty. (1980). The Analytical Hierarchy Process. McGraw Hill New York.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester