Course: Mathematical Theory of Decision Making 2

« Back
Course title Mathematical Theory of Decision Making 2
Course code KMA/MTR2
Organizational form of instruction Lecture + Exercise
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Stoklasa Jan, Mgr. et Mgr. Ph.D.
  • Talašová Jana, doc. RNDr. CSc.
  • Holeček Pavel, Mgr. Ph.D.
Course content
1. Decision making under risk: General formulation of the problem. 2. Risk analysis. 3. Rules of decision making under risk, one criterion utility function under risk. 4. Decision matrices. 5. Multi-stage decision processes, decision trees. 6. Multiple criteria decision making under risk - applications of the methods of multiple criteria decision making under certainty, Saaty's AHP method, multiple criteria utility function under risk. 7. Basic principles of decision making under uncertainty. 8. Multi-objective optimization: General formulation of the problem, basic notions. 9. Set of efficient alternatives. 10. Methods of multi-objective optimization with prior information about preferences in the criterial set. 11. Interactive methods of multi-objective optimization. 12. Games theory: General formulation of the problem, normal form game. 13. Antagonistic conflicts of two players, matrix games. 14. Non-antagonistic conflicts of two players, double-matrix games. 15. Conflicts with more decision makers. 16. Decision making under risk and uncertainty from the point of view of games theory.

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
  • Attendace - 39 hours per semester
  • Preparation for the Course Credit - 30 hours per semester
  • Preparation for the Exam - 50 hours per semester
Learning outcomes
Understand the fundamentals of the theory of decision making under risk, game theory and multiobjective programming. Manage corresponding mathematical methods.
Comprehension Understand the fundamentals of the theory of decision making under risk, game theory and multiobjective programming. Manage corresponding mathematical methods.
Prerequisites
Knowledge of basic concepts of decision theory and probability theory.

Assessment methods and criteria
Mark, Oral exam

Credit: the student has to pass a written test, concerning the basic notions and methods presented in KMA/MTR2. Exam: the student has to prove his/her active knowledge of the theory and methods included in KMA/MTR2.
Recommended literature
  • J. Bouška, M. Černý, D. Gluckaufová. (1984). Interaktivní postupy rozhodování. Academia, Praha.
  • J. Fotr, J. Dědina, H. Hrůzová. (2003). Manažerské rozhodování. Ekopress, Praha.
  • J. Fotr, M. Píšek. (1986). Exaktní metody ekonomického rozhodování. Academia, Praha.
  • J. Geweke. (1980). Decision Making under Risk and Uncertainty. Kluwer Academic Publishers, Dordrecht.
  • J. Ramík. (1999). Vícekriteriální rozhodování - analytický hierarchický proces (AHP). OPF SU, Karviná.
  • M. Maňas. (1991). Teorie her a její aplikace. SNTL, Praha.
  • P. Dostál, K. Rais, Z. Sojka. (2005). Pokročilé metody manažerského rozhodování. Grada Publishing, Praha.
  • R. Nau, E. Groen, M. Machina, O. Bergland. (1997). Economic and Environmental Risk and Uncertainty. Kluwer Academic Publishers, Dordrecht.
  • T. L. Saaty. (1980). The Analytical Hierarchy Process. McGraw Hill New York.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester